viernes, 31 de agosto de 2012

Tipos de Geometría no euclidiana

Se denomina geometría no euclidiana o no euclídea, a cualquier forma de geometría cuyos postulados y propiedades difieren en algún punto de los establecidos por Euclides en su tratado Elementos. No existe un sólo tipo de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio la misma en cada punto, en los que los puntos del espacio son indistinguibles pueden distinguirse tres tipos de geometrías:
  • La geometría euclidiana satisface los cinco postulados de Euclides y tiene curvatura cero.
  • La geometría hiperbólica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura negativa.
  • La geometría elíptica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura positiva.
Todos estos son casos particulares de geometrías riemannianas, en los que la curvatura es constante, si se admite la posibilidad de que la curvatura intrínseca de la geometría varíe de un punto a otro se tiene un caso de geometría riemanniana general, como sucede en la teoría de la relatividad general donde la gravedad causa una curvatura no homogénea en el espacio tiempo, siendo mayor la curvatura cerca de las concentraciones de masa, lo cual es percibido como un campo gravitatorio atractivo.

No hay comentarios:

Publicar un comentario